Tag Archives: Marketing

UPDATE: What’s the buzz around the big game on 2/5?

Let’s check back in on our Super Bowl analysis using Watson Analytics for Social Media

Since we built all these assets last week, all I need to do is refresh my project, and Watson Analytics for Social Media will update the underlying data. We can see the conversation has completely changed!
Screen Shot 2017-02-03 at 12.00.46 PM.png
After the conference championships last week, everyone was talking about Tom Brady and Matt Ryan. Now the entire conversation has shifted to the halftime show and commercials. Nearly 61% of posts are related to those two topics. Looks like most people will be loading up on their wings and hoagies during the actual game! 
There are two other interesting changes I have noticed. The sentiment has definitely increased for the entire conversation. Also, looking at the geography of the posts, the majority are coming from Texas where the game is being played.
Hope you enjoyed the update. Whatever you are doing for the game this weekend, have a happy and safe time!

Continue reading UPDATE: What’s the buzz around the big game on 2/5?

Planning the perfect party for the big game!

Guest post by Steve Archut

Hosting a party for the Big game? Here’s what to feed your guests

The game this weekend has practically become holiday in America with many people hosting parties and epic amounts of junk food consumed. Roughly 28,000,000 pounds (13,000,000 kg) of chips, 1.25 billion chicken wings, and 8,000,000 pounds (3,600,000 kg) of guacamole are consumed during the game. The question remains for those hosting a party, what do I serve my guests?

Using Watson Analytics for Social Media, I wanted to see what people were saying about some of the most popular dishes out there. In under 10 minutes I was able to identify what to serve and maybe more importantly what NOT to serve.

picture1

We can see that wings, hoagies(subs & heroes to those not from Philadelphia), and pizza are dominating the conversation.

The overwhelming majority of people prefer to order their food instead of opting for home cooking.  This is great since it will free up time to watch the pre-game festivities!

Watson Analytics for Social Media also gives me the ability to quickly view the sentiment around the different dishes:

picture2

Party trays have a surprisingly amount of negative sentiment.  (What did party trays ever do?)  Maybe I will avoid that this year.

When it comes to the Super Bowl, everyone is in on the food action.  Though men and women tend to have different opinions on what to serve.  This will really help plan what I should serve based on who is coming to the party.

picture3

In just a few minutes, Watson Analytics for Social Media gave me an in depth look at what people are saying about popular dishes for the big game this Sunday and I was able to glean insights previously unavailable to me. As for me, I’ll be serving meatball sandwiches this Sunday.

 

What’s the buzz around the big game on 2/5?

A GUEST POST BY ALEX JOSEPHS
With the Super Bowl right around the corner, I figured now would be a great time to use Watson Analytics for Social Media to analyze what the conversation has been about.  There are always many story lines surrounding the game, and this year is no different.
  • Will Matt Ryan get his first ring?
  • Will the Super Bowl commercials live up to the expectation?
  • How inflated are the footballs?
  • Who is just there for the half time show?

These are all questions we can explore!

I used seven themes to scrape the social web. I chose Matt Ryan, Tom Brady, and Roger Goodell to understand what people are saying about those three. It sure would be interesting if Roger Goodell had to hand Tom Brady the Lombardi trophy, I don’t think they play golf together in the offseason. As the Super Bowl has turned into quite a social event, for my other themes I looked at if people are going to parties or bars, and what the conversation is around commercials and the halftime show feature Lady Gaga.
Looking at the geospatial map, we can see that more people are talking about the game in Georgia than any other state. Falcons fans are excited to be back to the Super Bowl for the first time since 1998.map
Next we can analyze how these themes have evolved over the week.  We can see that Tom Brady was the hot topic on Monday, but as the week progressed, more people started discussing the commercials.trend
We can see here about 34% of the conversation is about the commercials and the halftime show, and more people are talking about going to parties rather than out to a bar.pie
Finally, we can look at what the sentiment is around these topics. The overall sentiment looks to be quite positive, alluding to many people being excited for the game.sentiment
Stay tuned as we will be monitoring the conversation and providing updates. Next week is media week at the Super Bowl and there are always a few interesting topics that pop up to shift the conversation. It will be interesting to see how the analysis evolves as the game gets closer.
To see how you can do the same type of analysis, try Watson Analytics for Social Media for FREE!

7 Themes for the 7 Days Until the Big Game

A GUEST POST BY ALEX JOSEPHS
With the Super Bowl right around the corner, I figured now would be a great time to use Watson Analytics for Social Media to analyze what the conversation has been about.  There are always many story lines surrounding the game, and this year is no different.
  • Will Matt Ryan get his first ring?
  • Will the Super Bowl commercials live up to the expectation?
  • How inflated are the footballs?
  • Who is just there for the half time show?

These are all questions we can explore!

I used seven themes to scrape the social web. I chose Matt Ryan, Tom Brady, and Roger Goodell to understand what people are saying about those three. It sure would be interesting if Roger Goodell had to hand Tom Brady the Lombardi trophy, I don’t think they play golf together in the offseason. As the Super Bowl has turned into quite a social event, for my other themes I looked at if people are going to parties or bars, and what the conversation is around commercials and the halftime show feature Lady Gaga.
Looking at the geospatial map, we can see that more people are talking about the game in Georgia than any other state. Falcons fans are excited to be back to the Super Bowl for the first time since 1998.map
Next we can analyze how these themes have evolved over the week.  We can see that Tom Brady was the hot topic on Monday, but as the week progressed, more people started discussing the commercials.trend
We can see here about 34% of the conversation is about the commercials and the halftime show, and more people are talking about going to parties rather than out to a bar.pie
Finally, we can look at what the sentiment is around these topics. The overall sentiment looks to be quite positive, alluding to many people being excited for the game.sentiment
Stay tuned as we will be monitoring the conversation and providing updates. Next week is media week at the Super Bowl and there are always a few interesting topics that pop up to shift the conversation. It will be interesting to see how the analysis evolves as the game gets closer.
To see how you can do the same type of analysis, try Watson Analytics for Social Media for FREE!

Fear not! Analytics are here! A real world example

In my post last week, I shared that many people are intimidated by analytics.  This week I will share a practical application of analytics to demonstrate that there is no need to “fear” analytics and in fact, with a few simple steps, they can have a tremendous impact on organizations.

The following scenario is based on a true story (names, industry have been changed):

Fly First airlines is a major international airline which has experienced tough times over the past several years. IBM CMOWith an aging fleet, Fly First has experienced widespread mechanical problems leading to delays which have impacted customer satisfaction and caused a lot of complaining on Social Media sites. Customer satisfaction scores have dropped over the past year and Fly First has seen a decline in passengers and fewer repeat flyers which has directly impacted the airline’s revenue streams.

Jay, Fly First’s CMO, has decided that deepening the knowledge of it’s customers is the best way to get the airline back on track. Jay knows that traditional data sets from internal systems such as purchase history and customer service inquiries would only tell him part of the story.  He made it his mission to deepen his understanding customers by expanding data collection, ensuring all analog and manual touch points become an opportunity to understand Fly First’s customers better. To accomplish this his team digitized menu selections by implementing electronic menu selections on seat back touch screens, allowed only credit cards for in-flight purchases, and using data capture capability conducted frequent digital surveys that covered topics like service, preferences, and how they pass time during flight delays.

Jay and his team in partnership with IT built detailed, individual 360 degrdigital thumb printee views of individual customers by combining multiple data sources from behind and outside the firewall.
They used interaction data like marketing responses, emails, call center notes, web click-stream; attitudinal and sentiment data bought from third parties or from social media like twitter, facebook and blogs, behavioral data including flight history, frequent flyer history etc and descriptive data such as seat preferences and demographic data from third parties and from their own data sources to build out a complete view of their customers
Jay believed that their enterprise data was only telling a piece of the story, so he asked his team to use the sentiment analysis capability to analyze what was being said about Fly First on social media channels.
Through the social sentiment analysis they discovered that:
  • Sentiment for Fly First had gone from positive to neutral to negative in 6 short months.
  • Negative sentiment was around frequent flight delays due to mechanical issues, lack of care and attention by gate staff to the inconveniences of the delays, and the flights always running out of the food they were going to order before it reached them.
  • Sentiment was extremely positive about the Fly First lounge experience.
Jay’s team also looked at which social media participants were positive, neutral or negative about Fly First and integrated the Fly First website with leading social channels enabling them to extend the social media analysis to individuals by linking frequent flyer accounts with social media accounts.
Jay knew to get the best understanding of customer needs he needed to continue to expand data collection activities to capture more customer information.surveys  To accomplish this, the Fly First team put in place a series of incentives for customers to share information about their preferences and opinions of the airline.

Jay’s team continued to increase data collection about customers
by creating incentives, such as frequent flyer awards for survey completion, for customers to give more information about themselves.
Jay had long leveraged analytics to identify profitable customers and increase customer retention. Now he is using it to predict behavior, such as seat upgrades or
in-flight duty free purchases, as well as leveraging social network analysis and entity analytics to understand his customers’ social networks.

With access to the all customer data, the Fly First team applied data mining capabilities to get a better picture of what their customers are likely to do and want.
They were able to predict:
  • Which offers would likely be accepted by their customers based on past history and sentiment.
  • Which customers are likely to refer a friend to the airline
  • Which customers are likely to buy flight upgrades, buy in flight meals, pay extra for lounge access.
  • What would increase their likely of leaving the airline
  • What increases their loyalty
One of their discoveries was that free lounge passes were the offers most likely to result in positive social sentiment.
Given these new insights into customer behavior, Jay and team are now able to engineer a new set of innovative experiences for their customers. Meet Rick and Andrea, two unrelated Fly First passengers waiting at a gate to board their flight to Chicago.
Rick:
He’s a sales manager who fly’s frequently but not always with their airline so has no status.
He recently took his family to Europe on FlyFirst.
He travels with an iPod, iPad and Bose headphones
He complains about delays frequently (as captured by the gate agents and on the surveys)  He has a large twitter following (linked his twitter to his account when he responded to a an offer sent by twitter) and actively tweets about the airline.
He also writes about his experiences flying on Fac ebook.
He always orders a bud and a chicken quesadilla when flying over lunch or dinner
Andrea:
She’s a Marketing executive
Loyal frequent flyer who has Elite status and access to the Lounge.
Travel economy and upgrades when possible
Frequent Facebook user with low social media influence
Purchases food on most flight
Frequently orders from Duty free.
Rick and Andrea’s flight has been delayed by two hours.  When the long delay getsphone recorded it triggers analytics to be run on all passengers determining which offers to text to which passengers. Due to the analytics initiative, Fly First is in a place to delight potentially disgruntled customers by offering customized offers to help make the wait a little bit easier.
Fly first knows Rick is likely to Tweet negative items to his large following and post negative comments on facebook. Fly Firsts systems analyze Rick’s data in real time and push an offer to him to go to the lounge for free.
Fly First also knows that Andrea is loyal customer who will likely head to the lounge and frequently purchases from duty free so they offer her a discount on in flight duty free.
Rick immediately takes First Flight up on their offer. While enjoying a beverage in the lounge, he publicly shares his new found appreciation for the airline via Twitter.
Andrea, also relaxes in the lounge. Later she boards the flight and buys her favorite perfume applying her discount and updating her Facebook status using the on board WIFI to “Just bought my favorite perfume compliments of Fly First”
The previous scene played out tens of thousands of times over the past year with thousands of customers. Fly First has increased their use of information to anticipate what their customers will want and do and act upon it in a way that yields incredible results.

Social media sentiment for Fly First has measurably improved from negative to neutral, with top detractors transforming to neutral or advocates. Lounge revenue is up, and frequent flyer participation has increased because of referrals. Customer insights are being leveraged to target promotions. Overall, marketing costs are down and yield is up.
I don’t know about you, but I wish my airline knew … and served me as well as this.

Does the word “analytics” scare you?

I studied German at university for both my undergrad and graduate degrees.  Numbers and data were not exactly my strong suit.  In fact, I was a bit of a “numberphobe” or “arithmophobe” for many years.    arithmophobia1I am willing to bet many of my fellow marketeers are also not thrilled with having to become more of a scientist vs. artist when it comes to managing marketing activities.  Many marketers have never developed (and frankly never been asked to) develop the analytic skills required to be successful in today’s data driven marketing world.

Well guess what folks?  If you are a marketer and have not started developing analytic skills yet…you are behind the curve and may find yourself left in the dust. Now, with that said, if this German major can “get it”, I am pretty convinced anyone can!  Here is how:

  1. Get knowledgeable! Learn about the metrics and KPIs marketers should focus on and why they are important.  This is Spend time learning from those who have come before you vAnalytics Knowledgeersus inventing your own.  B2B demand marketers can turn to Sirius Decisions for a strong and simple cookbook to measure marketing effectiveness.  Their demand waterfall gives everything a demand marketer needs to know.   Additional ideas on the right measurements are laid out in The Performance Manager.   This is probably one of the most important areas I learned about:  Which metrics to choose and why.  As I did not have a background in marketing,  I spent the majority of my efforts here.
  2. Sell the metrics and KPIs to sales and marketing leaders:kpi I can not emphasize enough how important it is to gain agreement on the joint marketing and sales metrics.  Mark Emond, from Demand Spring emphasizes this in his blog posts and his engagement with customers. Defining the word “lead” and agreeing on how many marketing will deliver to sales is likely to be a huge challenge.  It is critical to select metrics which your actions can influence and will have measurable impact on business performance (e.g. # of net new leads, Average deal size, average sales cycle etc.)  These will be the easiest to sell to your execs.
  3. Put the spreadsheet down, back away slowly and no one gets injured:  Spreadsheets are nice and familiar to most people but they lead to conflict and ultimately waste more time than it is worth.  With agreed upon metrics and KPIs, it is time to explore a single version of the truth versus everyone’s OWN version of the truth.  Business Intelligencedata discovery, predictive analytics and visualization offerings have become easier and easier to use over the past several years.  Many offer the flexibility of spreadsheets (heck, some even offer a spreadsheet like interface!) while also providing one, single version of the truth.  (No more debating which version of the spreadsheet based report is “correct”).  The other thing to consider when selecting a tool to support your needs:  ensure that you select a tool that is intuitive and is not going to take a PhD to learn!  @Ventanaresearch describes the shortcomings of spreadsheets in this white paper.
  4. Invest in education and training:  Invest in yourself and/or your employees. Importantly learn how to bring analytics into your team with the maximum positive impact.  There are many educational resources out there for you and your team to get up to speed.   Connect and network with others who use analytics in their organization to learn about how they have had success.

Overall needed to become more analytical can be daunting, especially for those who may not have an analytics background.  With that said, there are many resources available to you.  If a German major can lead marketing analytics initiatives, can it really be that complicated or hard to do?

Do companies REALLY care what customers think?

If not, they should! And there is a means to truly understand customers…

Social media analytics seems to be all the rage and for some, it is the Holy Grail to understanding customers’ needs, wants, desires, and opinions.  While much has been done in the realm of customer analytics, this has largely been focused on historical analysis of data behind the firewall.  This only tells one piece of the story.

Social media analytics enables organizations to add that missing link in customer analytics – sentiment.  What do people really think or feel about a product or service.  Yes, you can infer this information from historical purchase history or marketing/sales interaction history – But isn’t is just downright more accurate when you read something like: “This is the most USELESS product ever!”  or “I cannot believe that anyone would pay money for this piece of crap!!!” or “Hey, airline X!  A $10 voucher is not going to cut it this time!!!”

For you marketers out there, social media analytics can be a powerful ally as you determine how to position your offering, to whom and whether or not your messaging is resonating.  Social media analytics enables you to determine:

  • Who is speaking about your product – where are they from and what is their demographic?
  • Is the overall sentiment negative or positive?
  • What other topics are people speaking about which are related to your offering?
  • Are the people key influencers?

Now, many organizations, including marketing, make the mistake of looking at social media analytics as a stand alone set of information.  Those who see social media as a complementary data source will get a better picture of their customers and prospects.  Bringing Social Media analytics into the mix is part of a solid customer analytics strategy.

Tactically speaking,  marketers need to act on the information gleaned from social media.  Navel gazing will get you nowhere fast…….

Here are a few examples of companies responding to a social media crisis: