Tag Archives: Analytics

Analytics for everyone? For free? Get out!

Making analytics accessible to all users has been a challenge for years.  Companies like Tableau and Qlik have done a decent job of reaching finicky business users by providing visualizations and data discovery capabilities.  They are largely one trick ponies in each of their areas of strength.  That is just not going to work for me. I am an only child with some strong Veruca Salt tendencies (Think, I want it all and I want it NOW!).  So I am particularly happy to talk about  the Watson Analytics announcement today.

Here is what the market is saying:

As a former marketing operations leader, I am thrilled to see these types of capabilities being offered directly to marketing, sales, human resources, and finance professionals.  For the first time these business users can have all of the analytics capabilities they need in one location without ANY technical knowledge required.  From snazzy visualizations to predictive analytics Watson Analytics offers the analytics you need all in one single location to answer questions like:

  • How can I make sure I target the hottest leads?
  • How can I increase the value of the customers I already have?
  • How can I create more successful campaigns?
  • How can we attract and retain the right employees with the right skills?
  • How can we create and keep top performers?

I have neither the time nor the patience to play around with analytics tools.  I need to get the answers to these from my data and make decisions NOW.  Watson Analytics gives me what I need and it is cloud based….so I don’t need to download and install anything!  Woohoo!

Watson Analytics is starting with a beta program.  I am looking forward to getting my grubby little mitts on it over the next several weeks.  You too can get an early glimpse by registering for the beta here!

10 steps to better B2B marketing – an analytics view

I am a marketer by trade.  I am feeling the tidal wave of change happening to our profession – Data, Cloud, and New ways of engaging with customer and companies are presenting us marketers with tremendous challenges but also tremendous opportunities.

The timeless responsibilities of marketers are changing.  For the longest time, we have been held to account for:

  • Know your customers:  Which segments are the most attractive?
  • Define what and how to market it:  Which products will penetrate a given segment leading to the highest amount of revenue?
  • Protect the brand promise:  How is your brand perceived in the market?

These responsibilities are morphing into a a set of new imperatives for marketers:

  • Understand your customers:  Even in B2B organizations,  marketers need to engage potential customers with individualized messaging and offers.   This is about understanding customer behaviors – what they do, have done and are likely to do.
  • Create a system of engagement:  No more “random acts of marketing”.  Establish a consistent process for engaging customers at every interaction point  – web, email, social, live event, communities.  The way you engage should be driven by analytics – what is working?  What is not?  What channels and offers should I be using?  How does my target audience like to interact with me?
  • Design your brand and culture so they are one:  Establish internal cultural norms that further your brand.  Culture will win out over brand every time. Ensure your brand is carried in a positive way in the market.

While these responsibilities and imperatives are important and need to be considered, they are not the end all be all.  In the end, marketers still need to find answers.  They need to be able to read customers expressions or body language in a world that has become increasingly digitized.

Here are some tips about how to go about this:

  • Capture all customer interactions:  Data collection is critical to meeting the demands of he segment of one.  Ask your customers for information which will uniquely identify them – e.g. email address;  BUT, offer them something in return – a white paper, a demo, attendance at webinar or event.  Ultimately you need to engage customers in a dialog across all channels.  Every interaction should be treated equally – events, web, email, social – all opportunities to capture a piece of customer info.
  • Categorize the different types of customer data:  Marketers need to understand the different type of customer data:  Descriptive:  Self identified industry, title etc; Attitudinal: Customer opinions, feelings and sentiment. Behavioral: Buying history, event attendance etc.. Interactions:  Website visits,  sales calls, email, social media etc..
  • Analyze all customer data in context: With  the data from point 3, look at all of these together to develop a “digital thumb print” of your contacts – the pattern that makes the contact unique.
  • Use various types of analytics:This is where a “one size fits all” approach does not work.  You need to apply the right type of analytics to the task:  data collection, social media analysis, social network analysis and sentiment analytics for attitudinal information; reporting, statistical analysis, data mining and  advanced visualization for descriptive, behavioral and transactional information
  • Predict client behavior:  Do not wait until something bad happens…predict what your clients are likely to do next.  Will you get it right all the time?  Nope, but you can be sure that the odds are in your favor to get it right if you are following steps 1 -5.
  • Create a closed loop and global view of the customer:  Steps 1- 6 must feed a cycle of marketing.  This is similar to the instructions on your shampoo bottle: Apply, rinse and repeat.
  • Make analytics available to all:  Access to information to make critical decisions cannot be given to the select few if you truly want to drive better outcomes via your marketing activities.  Insights must be available to every marketer when they need it and how they need it – via standardized reports, dashboards, analysis etc..
  • Gain “right time” intelligence:   So much is made of “real time”.  As a B2B marketer I laugh at this….I do not need real time analytics.  (Yes, I said it!).  Would I like it?  Of course I would, but I do not need it.  What I really need is insight at the “right time” – when the buyer is ready to act.  Understanding your buyers’ “thumb print” will allow you to identify that “right time” to put an offer in front of them.
  • Discover new business models:  With all of the data available to you and analytics to help interpret it, you may be sitting on a gold mine without even knowing it.

Truly understanding customers and what they will do next is not rocket science.  It require some critical thought and intestinal fortitude to let go of long held beliefs and believe the data.

3 critical attributes for analytics solutions

I recently had the chance to attend the Gartner BI Summit in Las Vegas.  If you are in the analytics space and have not attended this event, you really need to check it out.  My colleague Marcus Hearne shares his experiences at the event in his blog post. The event is Gartner‘s opportunity to share their point of view but also for analytics vendors of all sizes to share their points of view.

So what did I take away from this event?  Put quite simply, analytics vendors must design solutions and capabilities that are fast, easy and smart.  For too long, analytics have been relegated to the to the wizards, witches, sorcerers and sorceresses in their lair.    It does not need to be that way.  As Gartner analyst Rita Sallam pointed out in the keynote, mere mortals can demystify the magic and understand the “tricks” behind the magic.

As I sat through the various vendor sessions I picked up on the key themes of fast, easy and smart.  Let’s talk a little bit about what that means:

Fast:  Each of the sessions I sat through demonstrated the speed of the analytics offerings.  This should just be an expectation period, no discussion.  You need answers and you need them fast.   We expect to get answers quickly in our personal lives…why should we have a different expectation at work?  It was more than just raw speed.  It is also about getting up and running quickly.  This can be done by adopting cloud based analytic solutions.

Easy:  Analytics solutions must be dead simple to use – I am talking as easy as a telephone, microwave or a garden hose.  If analytics require a PhD or reading a long manual…there will be no broad adoption.    But it is much more that just easy to use. The information must be easy to understand.  This can be accomplished through powerful visualizations.  Remember: A Picture is worth a thousand words.

Smart:  Many of the latest and greatest innovations feature industry specific or use case specific solutions, such as Predictive Maintenance and Quality.  Analytic solutions must be specific to the users’ role and address specific pain points.  More and more offerings will include some form of intelligence to make the analytics all the more powerful.

To hear more about analytics I recommend visiting a Business Analytics Summit in a city near you.

 

Analytics is not a thing you “do”…it’s a way of life.

I recently attended conference in Singapore

A beautiful view of Singapore at night.
A beautiful view of Singapore at night.

where I had the chance to listen to thought leaders discuss the need for analytics to address what Gartner refers to as the “nexus of forces” – CloudSocialMobile and Information.   Mychelle Mollot took a deeper dive on the “information”  force in the Big Data and Analytics keynote.

As a marketer I grapple with explaining these nexus of forces and the need for Big Data and Analytics everyday.  Everyone seems to have an opinion on exactly what Big Data is and why it is so important.   It was in fact several customers and partners  who reminded me of several things: Continue reading Analytics is not a thing you “do”…it’s a way of life.

Fear not! Analytics are here! A real world example

In my post last week, I shared that many people are intimidated by analytics.  This week I will share a practical application of analytics to demonstrate that there is no need to “fear” analytics and in fact, with a few simple steps, they can have a tremendous impact on organizations.

The following scenario is based on a true story (names, industry have been changed):

Fly First airlines is a major international airline which has experienced tough times over the past several years. IBM CMOWith an aging fleet, Fly First has experienced widespread mechanical problems leading to delays which have impacted customer satisfaction and caused a lot of complaining on Social Media sites. Customer satisfaction scores have dropped over the past year and Fly First has seen a decline in passengers and fewer repeat flyers which has directly impacted the airline’s revenue streams.

Jay, Fly First’s CMO, has decided that deepening the knowledge of it’s customers is the best way to get the airline back on track. Jay knows that traditional data sets from internal systems such as purchase history and customer service inquiries would only tell him part of the story.  He made it his mission to deepen his understanding customers by expanding data collection, ensuring all analog and manual touch points become an opportunity to understand Fly First’s customers better. To accomplish this his team digitized menu selections by implementing electronic menu selections on seat back touch screens, allowed only credit cards for in-flight purchases, and using data capture capability conducted frequent digital surveys that covered topics like service, preferences, and how they pass time during flight delays.

Jay and his team in partnership with IT built detailed, individual 360 degrdigital thumb printee views of individual customers by combining multiple data sources from behind and outside the firewall.
They used interaction data like marketing responses, emails, call center notes, web click-stream; attitudinal and sentiment data bought from third parties or from social media like twitter, facebook and blogs, behavioral data including flight history, frequent flyer history etc and descriptive data such as seat preferences and demographic data from third parties and from their own data sources to build out a complete view of their customers
Jay believed that their enterprise data was only telling a piece of the story, so he asked his team to use the sentiment analysis capability to analyze what was being said about Fly First on social media channels.
Through the social sentiment analysis they discovered that:
  • Sentiment for Fly First had gone from positive to neutral to negative in 6 short months.
  • Negative sentiment was around frequent flight delays due to mechanical issues, lack of care and attention by gate staff to the inconveniences of the delays, and the flights always running out of the food they were going to order before it reached them.
  • Sentiment was extremely positive about the Fly First lounge experience.
Jay’s team also looked at which social media participants were positive, neutral or negative about Fly First and integrated the Fly First website with leading social channels enabling them to extend the social media analysis to individuals by linking frequent flyer accounts with social media accounts.
Jay knew to get the best understanding of customer needs he needed to continue to expand data collection activities to capture more customer information.surveys  To accomplish this, the Fly First team put in place a series of incentives for customers to share information about their preferences and opinions of the airline.

Jay’s team continued to increase data collection about customers
by creating incentives, such as frequent flyer awards for survey completion, for customers to give more information about themselves.
Jay had long leveraged analytics to identify profitable customers and increase customer retention. Now he is using it to predict behavior, such as seat upgrades or
in-flight duty free purchases, as well as leveraging social network analysis and entity analytics to understand his customers’ social networks.

With access to the all customer data, the Fly First team applied data mining capabilities to get a better picture of what their customers are likely to do and want.
They were able to predict:
  • Which offers would likely be accepted by their customers based on past history and sentiment.
  • Which customers are likely to refer a friend to the airline
  • Which customers are likely to buy flight upgrades, buy in flight meals, pay extra for lounge access.
  • What would increase their likely of leaving the airline
  • What increases their loyalty
One of their discoveries was that free lounge passes were the offers most likely to result in positive social sentiment.
Given these new insights into customer behavior, Jay and team are now able to engineer a new set of innovative experiences for their customers. Meet Rick and Andrea, two unrelated Fly First passengers waiting at a gate to board their flight to Chicago.
Rick:
He’s a sales manager who fly’s frequently but not always with their airline so has no status.
He recently took his family to Europe on FlyFirst.
He travels with an iPod, iPad and Bose headphones
He complains about delays frequently (as captured by the gate agents and on the surveys)  He has a large twitter following (linked his twitter to his account when he responded to a an offer sent by twitter) and actively tweets about the airline.
He also writes about his experiences flying on Fac ebook.
He always orders a bud and a chicken quesadilla when flying over lunch or dinner
Andrea:
She’s a Marketing executive
Loyal frequent flyer who has Elite status and access to the Lounge.
Travel economy and upgrades when possible
Frequent Facebook user with low social media influence
Purchases food on most flight
Frequently orders from Duty free.
Rick and Andrea’s flight has been delayed by two hours.  When the long delay getsphone recorded it triggers analytics to be run on all passengers determining which offers to text to which passengers. Due to the analytics initiative, Fly First is in a place to delight potentially disgruntled customers by offering customized offers to help make the wait a little bit easier.
Fly first knows Rick is likely to Tweet negative items to his large following and post negative comments on facebook. Fly Firsts systems analyze Rick’s data in real time and push an offer to him to go to the lounge for free.
Fly First also knows that Andrea is loyal customer who will likely head to the lounge and frequently purchases from duty free so they offer her a discount on in flight duty free.
Rick immediately takes First Flight up on their offer. While enjoying a beverage in the lounge, he publicly shares his new found appreciation for the airline via Twitter.
Andrea, also relaxes in the lounge. Later she boards the flight and buys her favorite perfume applying her discount and updating her Facebook status using the on board WIFI to “Just bought my favorite perfume compliments of Fly First”
The previous scene played out tens of thousands of times over the past year with thousands of customers. Fly First has increased their use of information to anticipate what their customers will want and do and act upon it in a way that yields incredible results.

Social media sentiment for Fly First has measurably improved from negative to neutral, with top detractors transforming to neutral or advocates. Lounge revenue is up, and frequent flyer participation has increased because of referrals. Customer insights are being leveraged to target promotions. Overall, marketing costs are down and yield is up.
I don’t know about you, but I wish my airline knew … and served me as well as this.

Does the word “analytics” scare you?

I studied German at university for both my undergrad and graduate degrees.  Numbers and data were not exactly my strong suit.  In fact, I was a bit of a “numberphobe” or “arithmophobe” for many years.    arithmophobia1I am willing to bet many of my fellow marketeers are also not thrilled with having to become more of a scientist vs. artist when it comes to managing marketing activities.  Many marketers have never developed (and frankly never been asked to) develop the analytic skills required to be successful in today’s data driven marketing world.

Well guess what folks?  If you are a marketer and have not started developing analytic skills yet…you are behind the curve and may find yourself left in the dust. Now, with that said, if this German major can “get it”, I am pretty convinced anyone can!  Here is how:

  1. Get knowledgeable! Learn about the metrics and KPIs marketers should focus on and why they are important.  This is Spend time learning from those who have come before you vAnalytics Knowledgeersus inventing your own.  B2B demand marketers can turn to Sirius Decisions for a strong and simple cookbook to measure marketing effectiveness.  Their demand waterfall gives everything a demand marketer needs to know.   Additional ideas on the right measurements are laid out in The Performance Manager.   This is probably one of the most important areas I learned about:  Which metrics to choose and why.  As I did not have a background in marketing,  I spent the majority of my efforts here.
  2. Sell the metrics and KPIs to sales and marketing leaders:kpi I can not emphasize enough how important it is to gain agreement on the joint marketing and sales metrics.  Mark Emond, from Demand Spring emphasizes this in his blog posts and his engagement with customers. Defining the word “lead” and agreeing on how many marketing will deliver to sales is likely to be a huge challenge.  It is critical to select metrics which your actions can influence and will have measurable impact on business performance (e.g. # of net new leads, Average deal size, average sales cycle etc.)  These will be the easiest to sell to your execs.
  3. Put the spreadsheet down, back away slowly and no one gets injured:  Spreadsheets are nice and familiar to most people but they lead to conflict and ultimately waste more time than it is worth.  With agreed upon metrics and KPIs, it is time to explore a single version of the truth versus everyone’s OWN version of the truth.  Business Intelligencedata discovery, predictive analytics and visualization offerings have become easier and easier to use over the past several years.  Many offer the flexibility of spreadsheets (heck, some even offer a spreadsheet like interface!) while also providing one, single version of the truth.  (No more debating which version of the spreadsheet based report is “correct”).  The other thing to consider when selecting a tool to support your needs:  ensure that you select a tool that is intuitive and is not going to take a PhD to learn!  @Ventanaresearch describes the shortcomings of spreadsheets in this white paper.
  4. Invest in education and training:  Invest in yourself and/or your employees. Importantly learn how to bring analytics into your team with the maximum positive impact.  There are many educational resources out there for you and your team to get up to speed.   Connect and network with others who use analytics in their organization to learn about how they have had success.

Overall needed to become more analytical can be daunting, especially for those who may not have an analytics background.  With that said, there are many resources available to you.  If a German major can lead marketing analytics initiatives, can it really be that complicated or hard to do?

Do companies REALLY care what customers think?

If not, they should! And there is a means to truly understand customers…

Social media analytics seems to be all the rage and for some, it is the Holy Grail to understanding customers’ needs, wants, desires, and opinions.  While much has been done in the realm of customer analytics, this has largely been focused on historical analysis of data behind the firewall.  This only tells one piece of the story.

Social media analytics enables organizations to add that missing link in customer analytics – sentiment.  What do people really think or feel about a product or service.  Yes, you can infer this information from historical purchase history or marketing/sales interaction history – But isn’t is just downright more accurate when you read something like: “This is the most USELESS product ever!”  or “I cannot believe that anyone would pay money for this piece of crap!!!” or “Hey, airline X!  A $10 voucher is not going to cut it this time!!!”

For you marketers out there, social media analytics can be a powerful ally as you determine how to position your offering, to whom and whether or not your messaging is resonating.  Social media analytics enables you to determine:

  • Who is speaking about your product – where are they from and what is their demographic?
  • Is the overall sentiment negative or positive?
  • What other topics are people speaking about which are related to your offering?
  • Are the people key influencers?

Now, many organizations, including marketing, make the mistake of looking at social media analytics as a stand alone set of information.  Those who see social media as a complementary data source will get a better picture of their customers and prospects.  Bringing Social Media analytics into the mix is part of a solid customer analytics strategy.

Tactically speaking,  marketers need to act on the information gleaned from social media.  Navel gazing will get you nowhere fast…….

Here are a few examples of companies responding to a social media crisis:

Finally! Predictive Analytics even I can use!

When I was running marketing operations, I had hired a statistics expert to come into the organization to help me make sense of all of our marketing data.  As I worked with this excellent “stats guy”, I realized that predictive analytics can be pretty darn complicated and required a more specialized skill set than I had originally thought.

This all changed on Tuesday June 11, 2013.  IBM announced the availability of IBM SPSS Analytic Catalyst – a statistician in the software – which makes predictive analytics on big data available to mere mortals like myself.  I was admittedly skeptical that this new offering could actual make predictive analytics accessible.  There had to be some gotcha….  well, I was wrong (not something I admit often!).

So, what does this thing do exactly? Let’s say you are a marketer and want to understand which customers would likely “churn” or leave for your competitor.  This is where Analytic Catalyst comes in.  There is a three step process to get the answers you need.

  1. Add your data (csv file)
  2. Select the field you would like to predict
  3. Review plain English results

Sounds simple?  Well it is.  Review a demo here to see how this can help marketers, customer service teams, sales and other organizations find the small data within the big data!

Big Data – big deal or big hype?

Big Data is a reality.  Big data is also big hype. So where is the real value in the Big Data hype?

Like it or not, Big Data is a reality marketing and other organizations are facing today and will face well into the future. According to the IBM Global Technology outlook, it is estimated that data growth will explode exponentially from 3,000 exabytes today to 9,000 exabytes by 2015. (I had to look up the word exabyte!) So what do we marketers do about incorporating this new source of data?  Where are the best use cases?

We are faced with a challenge – Big Data alone does not help us.  We need ways to get value out of the data.  The challenge is that traditional analytic tools are not exactly suited to take advantage of Big Data.  Analytics vendors are developing offerings in an attempt to keep up with the ever changing needs.  With that said, we need to be thinking about where it fits in.

For me, the best use case is squarely in the camp of customer analytics.  I love my data from the marketing automation system.  It tells me a great deal about the patterns and behaviors my customers and prospects display.  But it only gives me a piece of the puzzle.

As I think about my customer marketing initiatives, I need to be able to prevent customer defection (commonly known as “churn”). By leveraging unstructured data (call center notes, customer interactions, survey responses…) with internal structured data to detect & proactively mitigate factors that lead to defection,  I can better design marketing programs to avoid that “aha moment” when customers realize they no longer want to do business with satisfaction surveyus versus defecting to a competitor.  Conversely, applying the same approach can help marketers identify the “aha moment” which leads to improved customer loyalty

So, is Big Data hype or is it really something we marketers can benefit from?  If marketing organizations do several things, I believe it will improve marketing’s ability reach the target audience with more appropriate offers.

 

  • Big Data platform:  Do not look at Big Data as this mysterious beast that can solve world hunger!  It should be considered an additional data source which can augment existing data sources such as CRM, ERP or marketing automation data.  If you are a marketer, you should be connecting with your IT team to determine how to incorporate   this data into your existing data.
  • Analytics: Do not forget the analytics!  Discover, visualize and explore big data alongside traditional information to drive action and share your insights with others. Employ predictive analytics to identify patterns within the data leading to more accurate answers.
  • Answers!  Ultimately, it is what you do with the data versus the data itself! Use Big Data combined with traditional data sources to deliver more accurate answers by analyzing, predicting and automating decisions.

Connect with me to continue this discussion:  @BrendanRGrady

Would you have married your spouse if you only knew his or her address?

Marketers claim to know their customers because they have captured demographic and historical transaction information about them but would you have married your spouse based on age, height, address and the fact that they bought shoes once?  I think not.  Why should marketers think this enough to truly address the needs of today’s customers?

Many marketers are doing a very good job an incorporating traditional data critical to being able to target marketing efforts.

Data such as:

  • Self-declared demographic information
  • Marketing inquiries
  • Sales leads
  • Orders, payment history

This information is a great place to start.  There is no doubt that applying advanced analytics help marketers find patterns and trends while also predicting what is likely to happen next.  

Think about being on your first date with you spouse.  The conversation starts with the basics:

First Date

  • Where are you from?
  • Where do you live now?
  • Where did you study?

But quickly moves to:

  • What is your opinion of the President?
  • What do you do for fun?
  • What do you really dislike?

Now think about applying this in a business context.  As a marketer, I would like nothing more than to put an offer in front of customers and prospects that would not only speak to their business need but would also speak to personal likes.  How can you do this?

digital thumb print

Every interaction is an opportunity to get to know your buyers better.

Traditional interaction data from a marketing automation system such as Unica, Eloqua, Marketo or Neolane is a valuable source of information about  buyers’ behavior.  By capturing all interactions, regardless of channel, allows marketing organizations to apply predictive models to predict which customers are likely to respond to marketing offers via which channel and how frequently.    Using predictive models as part of a broader  customer analytics initiative helps marketing organizations identify which buyers to target and personalize offers for cross and up-sell opportunities

Great, we now know which offers my buyers will likely respond to and how frequently!  Now, go back to my first example – the date.  Getting to know your buyers personal preferences allows you to gain a deeper understanding of customer attitudes, preferences and opinions to make them part of the decision making process. Think about collecting customer opinions, attitudes and interest via surveys or data collection.  Use the interaction opportunity to capture a hobby or other personal activity.  Then apply this in your marketing activities.  If your buyer likes golf, find a way to incorporate it into your outreach (e.g. my marketing team has used direct mail/dimensional mailers giving away a free driver!).  

Social Media is another data source which can provide tremendous insight into customer opinions, both positive and negative.  Apply social media analytics to get the real opinion of your products to ultimately engage brand advocates and detractors in a conversation. CI Social media analytics allows organizations to capture consumer data from social media to understand attitudes, opinions and trends.

They key here is not to look at each of the pieces of data as stand alone pieces of information.  It is about combining them to get a “thumb print” which identifies the uniqueness of an individual.

Please feel free to connect with me on Twitter to discuss further @BrendanRGrady